
Sustainable Construction and Design 2011 

   Copyright © 2011 by Laboratory Soete 

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE 
COMMERCIAL FINITE ELEMENT CODE ABAQUS 

Mohsen Safaei, Wim De Waele 

Ghent University, Laboratory Soete, Belgium 

Abstract The present work relates to the development of computational material models for sheet metal 
forming simulations. In this specific study, an implicit scheme with consistent Jacobian is used for 
integration of large deformation formulation and plane stress elements. As a privilege to the explicit 
scheme, the implicit integration scheme is unconditionally stable. The backward Euler method is used to 
update trial stress values lying outside the yield surface by correcting them back to the yield surface at 
every time increment. In this study, the implicit integration of isotropic hardening with the von Mises yield 
criterion is discussed in detail. In future work it will be implemented into the commercial finite element code 
ABAQUS by means of a user material subroutine. 
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1 INTRODUCTION  

Advanced high strength steels (AHSS) are increasingly found in structural applications because of their 
high specific strength combined with reasonable to good formability. Numerical modeling of AHSS forming 
processes is confronted with several challenges, primarily because of their specific strain hardening 
behaviour and the anisotropic nature of its strength properties. In recent years several comprehensive 
constitutive models have been developed [1-3] and implemented in dedicated software. In the commercial 
finite element code ABAQUS [4] the user is limited to the Hill 48 model for anisotropic yielding. More 
advanced models have to be implemented by means of the user material (UMAT) subroutine. 
Unfortunately, the codes of such subroutines for advanced constitutive models are typically not available as 
open source. 

Implementing material constitutive equations into finite element code can simply be explained as defining 
stress update algorithms in which an imposed strain increment gives rise to a corresponding stress 
increment. Describing this incremental relation is not always straightforward. This paper discusses on the 
fundamentals needed for the implementation in ABAQUS, by means of a user material subroutine UMAT, 
of von Mises plasticity with isotropic hardening using the implicit backward Euler method. As opposed to 
explicit integration, implicit integration used with consistent Jacobian overcomes the convergence problems 
encountered at the transition from elastic to plastic behaviour. As a result, overestimation of stress will not 
appear. Moreover, contrary to explicit integration which uses small time steps, implicit integration enables 
the use of larger time steps so CPU time can be highly reduced.  

Note that a finite element method is referred to as an implicit finite element method when implicit schemes 
for the integration of the momentum balance, or equilibrium equations are employed. Therefore an implicit 
finite element method can use implicit or explicit integration for constitutive equations such as stress update 
algorithms [5]. 

2 FUNDAMENTAL CONCEPTS OF PLASTICITY 

Throughout the following discussion, the strain tensor is adopted as the primary variable. This is in 
accordance with the approach used in [6], which considers the elastic-plastic behaviour as a strain-driven 
problem. In the following subsections, we summarize the governing equations of classical rate-independent 
plasticity within the context of the three-dimensional infinitesimal theory. 
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2.1 Strain tensor decomposition and stress-strain relation 
When a material is deformed, it generally strain hardens. Contrary to perfect plasticity, the stress increases 
with increasing deformation. The strain tensor can be decomposed into its plastic and elastic components. 
Classical additive decomposition of the strain tensor can be written as: 

 (1) 

In which  and  denote elastic and plastic strains. Therefore Hooke’s law for elastic stress can be written 
as: 

 (2) 

With  the tensor of elastic moduli which is assumed constant. 

The multi-axial stress tensor  can be presented as [7] 

 

 

            

 

(3) 

 

In which   and  are shear modulus and Lame constant, respectively. 

 
(4) 

 
(5) 

For plane stress, in which , the stress and strain tensors are written as 

 

 
(6) 

Note that , although it does not appear explicitly. The above equations take the following form: 

 

 

 

  

 

 

(7) 

2.2 Incompressibility 
In metal plasticity, it is generally assumed that deformation occurs without volume change. This assumption 
can be written as:  

 

or 

 

 
(8) 

 
 

In which  is the trace function. 

2.3 Effective stress and effective plastic strain rate 
The von Mises effective stress is defined as: 

276



Sustainable Construction and Design 2011 

   Copyright © 2011 by Laboratory Soete 

 
(9) 

where  denotes a component of the Cauchy stress tensor. This can be written more succinctly using the 
double dot product: 

 

(10) 

 

Where ||(.)|| is the norm of tensor (.) and  is the deviator of the tensorial stress defined by: 

 
(11) 

with  a third order identity matrix. The hydrostatic stress does not contribute to deformation.  

This procedure does not conform for plane stress conditions. For these conditions a mapping matrix  is 
used to relate the stress and its deviator 

 

In vector notation, the deviator is given by 

 

and the mapping matrix is written as 

 

 

 

 

(12) 

 

 

The effective plastic strain rate  is defined as:  

Considering the plane stress case, the effective plastic strain rate can be written as: 

 

 

(14) 

 

Where  is called the plastic multiplier (see also section 2.6). 

To address the factor 2 of the shear strain component (see Eqn(6)2) when converted to vector notation 
rather than matrix notation, the mapping matrix  is changed to  and called the projection matrix. 

 
(15) 

 

Further,  is equal to 

 
(16) 

in which  is the back stress tensor that defines the location of the centre of the yield surface. In many 
metals subjected to cyclic loading, it has been experimentally observed that the yield surface undergoes a 
global translation in the direction of plastic flow. This phenomenon is called kinematic hardening. The back 
stress is omitted in this study, since only isotropic hardening will be considered. 

2.4 Yield criterion 
The yield function  defines a locus for which  and  means elastic and plastic deformation, 
respectively. The von Mises yield criterion is given by: 

 
(17) 

 

(13) 

 

277



Sustainable Construction and Design 2011 

   Copyright © 2011 by Laboratory Soete 

This can be transformed to 

 

 

(18) 

In these equations  is the flow stress corresponding to the equivalent plastic strain . 

For the case of plane stress, the yield criterion is written as 

 

(19) 

2.5 Loading/un-loading and consistency conditions 
The Kuhn-Tucker unilateral constraints (also called complementarity conditions) provide the most 
convenient formulation of the loading/unloading conditions for classical plasticity. Stresses must be 
admissible and plastic strain can only take place on the yield surface, therefore  and  sigma are restricted 
by the following unilateral constraints [8]: 

 

 
(20) 

In addition  must satisfy the consistency requirement. This hypothesis describes that when the 
material hardens, the load point remains on the yield surface, and can be mathematically expressed as: 

 (21) 

These conditions imply that in case of elastic deformation or  it follows that . The plastic 
strain rate is thus equal to zero and the response is instantaneously elastic: 

 (22) 

In the case that  the Kuhn-Tucker constraints are automatically satisfied and  can be positive or 
zero. If  than it can be concluded that , which corresponds to (elastic) unloading from a 
plastic state. If  than  is termed neutral loading and  is a state of plastic loading.   

In case , the consistency condition Eqn (21) can be written as: 

 
(23) 

Note that when working in principal space, the double contracted product is substituted with dot product. 
Therefore Eqn Error! Reference source not found. results in 

 (24) 

In which  is the partial derivative of  to . 

2.6 Normality hypothesis 
The normality hypothesis implies that the increment of plastic strain is normal to the yield surface at the 
load point. This can be written as: 

 
(25) 

In which  and  express the direction of the incremental plastic strain rate and its magnitude, respectively.  

Considering the tri-axial von Mises yield function: 

 
(26) 

Therefore Eqn (25) can be written as: 

 
(27) 
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This can be rewritten for the case of plane stress as 

 (28) 

3 IMPLICIT INTEGRATION 

One of the advantages of implicit over explicit integration is its unconditional stability in the sense that 
stress never drifts away from the yield surface, using an elastic (trial) stress and a plastic corrector. For an 
imposed strain increment, an elastic trial stress (also called predicator stress), which falls outside the yield 
surface, is calculated. Using a plastic corrector, the stress is corrected to be back on the yield surface. The 
stress is updated by means of the mentioned plastic corrector in such a way that consistency is satisfied. 
This concept is schematized in Figure 1. Figure 2 illustrates the corresponding algorithm of the user 
material subroutine for implementation of isotropic hardening and von Mises plasticity in ABAQUS.  

 

Figure 1 Backward Euler stress update scheme using trial stress and plastic corrector 

 

 
Figure 2: Schematic illustration of the return mapping algorithm for the ABAQUS UMAT. 

Assume that the total and plastic strain fields and the equivalent plastic strain (includes the hardening 
parameters) at a time  are known . The elastic strain and stress tensors are dependent 
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variables and can be calculated based on these ‘driving’ variables (see section 2.1).  

At the start of the algorithm, an increment  (determined from a given displacement field) is applied and 
the total strain at time  is updated as 

 

 
( 29) 

 

 First consider a purely elastic step (trial state), which in general will not correspond to an actual state. As 
depicted in Figure 1 it is concluded that 

 

with  . 

(30) 

 

In the following step, the yield condition is checked by calculating 

 

 in which 

(31) 

 

 (32) 

As stated higher, the variable  is omitted in this study since only isotropic hardening is considered. If 
 then the Kuhn-Tucker conditions imply that  and the step is elastic. The basic variables are 

updated as  

 

 

 

 

(33) 

 

In case  the trial (elastic) state cannot be a solution since the constraint condition is violated. The 
process is thus incrementally plastic, which requires: 

 (34) 

The update process depends parametrically on the multiplier  which is determined by enforcing the 
consistency condition Eqn (23) at time . After some numerical treatment, this results in 

 

(35) 

 

In which  is written as: 

 
 

whith  the updated stress at the current step 

 

 

(36) 

 

Then it follows: 

 

 

 

(37) 
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in which  

 

 

 

(38) 

 

Eqn (37) should be solved by Newton iteration, for which: 

 

This iteration results in the converged .  

(39) 

 

 

The function  is called modified elastic tangent modulus which in case of isotropic hardening is written as: 

 (40) 

So far most of the parameters required are found and the update procedure is done as follows: 

 (41) 

  (42) 

 (43) 

The strain in the thickness direction  is updated as follows: 

 (44) 

3.1 Material Jacobian 
Implementation of plasticity constitutive equations into ABAQUS using implicit integration, demands the 
definition of the tangent stiffness matrix or material Jacobian ( ) which highly depends on material 
behavior. It should be noted that the material Jacobian does not affect the accuracy of the solution but the 
rate of the convergence of the solution. In case of isotropic elasticity the material Jacobian is the same as 
the elastic tangent stiffness ( ). 

 

 

 

 

 

 

(45) 

 

4 CONCLUSIONS 

This paper presents elastic-plastic integration of material constitutive law for case of plane stress has been 
presented. The terminology and method used in this paper owes to the work of Simo and Hoghes [6]. The 
key parameter in this is the plastic multiplier  for which the Newton’s iteration method has been used. 
Effective plastic strain and plastic strain are stored at the end of the subroutine and are recalled at the next 
iteration. Stress update for thickness direction is dealt with in a different manner than the one that is used 
for tri-axial and plane stress cases. Finally, material Jacobian is returned to the program even though that it 
has no effect on the accuracy of the solution but the rate that it converges. 
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5 NOMENCLATURE 

 Component of in-plane strain 

 Component of Cauchy stress tensor 

 Initial yield stress 

 Effective stress 

 Poisson’s ratio  

 young’s modulus 

   

 Trial stress 

 Deviator trial stress 

  Isotropic hardening function 

  Increment 

: Double contracted product 

 Material Jacobian 

G Shear modulus 

 Plastic multiplier 

 Modified elastic tangent moduli 

   Isotropic yield stress 

 Effective plastic strain 

 Projection matric for plane stress 

 Stress 

  Stress 

  Elastic tangent stiffness 

  Iteration number 

  Time differentiation  

  Partial derivative of  to  
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