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The hydro-geomorphology of mountain catchments is mainly determined by vegetation cover. This 
study was carried out to analyse the impact of vegetation cover dynamics on flooding and water 
balance in 11 steep (0.27-0.65 m m-1) catchments of the western Rift Valley escarpment of Northern 
Ethiopia, an area that experienced severe deforestation and degradation until the first half of the 
1980s and considerable reforestation thereafter. Land cover change analysis was carried out using 
aerial photos (1936,1965 and 1986) and Google Earth imaging (2005 and 2014). Peak discharge 
heights of 332 events and the median diameter of the 10 coarsest bedload particles (Max10) moved 
in each event in three rainy seasons (2012-2014) were monitored. The result indicates a strong re-
duction in flooding (R2 = 0.85, P<0.01) and bedload sediment supply (R2 = 0.58, P<0.05) with increas-
ing vegetation cover. Overall, this study demonstrates that in reforesting steep tropical mountain 
catchments, magnitude of flooding, water balance and bedload movement is strongly determined by 
vegetation cover dynamics.
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Introduction 
The northern Ethiopian highlands have long been subjected to severe land degradation 
(Hurni, 1988; Gebresamuel et al., 2009; Nysen et al., 2015) mainly due to deforestation, 
overgrazing, impoverishment of the farmers, erosive rains, steep slopes and limited ag-
ricultural intensification (Nyssen et al., 2008) as well due to the recurring droughts in the 
second half of the 20th century. Due to the severity of the degradation, several hydrogeo-
morphologic features, including dense gully and river networks have developed through-
out the region (Frankl et al., 2011; Yitbarek et al., 2012). In the western Rift valley escarp-
ment in particular, the severity of land degradation is evident in the development of dense 
gullies and scar networks in the steep slopes transporting high levels of discharge and 
sediment, including very large boulders, down to the Raya graben. Consequently, devas-
tating flood events claimed the lives of many people and livestock up to the mid-1980s. 
To reverse the problem and specifically protect Alamata town and many villages of the 
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Raya graben from flooding, several rehabilitation interventions were initiated in the sec-
ond half of the 1980s which comprised both physical structures and reforestation meas-
ures including the establishment of exclosures on highly degraded steep slopes (Asefa et 
al., 2003; Nyssen et al., 2010; Nysen et al., 2015) and abandonment of farming and reset-
tlement of people who lived in the severely degraded catchments. In particular the es-
tablishment of exclosures (previously degraded areas that are protected from agriculture 
and grazing to facilitate rapid rehabilitation), have been one of the most effective ways 
of pursuing vegetation regeneration in the region (Aerts et al., 2003; Descheemaeker et 
al., 2006). Consequently, the vegetation cover of many of the previously degraded catch-
ments has been improved (Nyssen et al., 2008) (Figure 1) which in turn has resulted in 
several hydrogeomorphologic changes. 

Figure 1: Incidental series of repeat photographs of Gira Kahsu catchment shows expansion of 
agricultural land up to 1975 and dramatic reforestation thereafter.

Many researchers in the region have reported on the role of the improved vegetation cover 
in reducing the amount of discharge and sediment production from rehabilitated catch-
ments. A study by Descheemaeker et al. (2006) showed a significant reduction in runoff 
after rehabilitation of small exclosed catchments while Nyssen et al. (2010) reported a re-
duction of direct runoff volume after catchment management. In their study Frankl et al. 
(2011) found gully systems to be partially stabilized. However, the impact of changes in 
vegetation cover on the hydrogeomorphologic characteristics of steep mountain catch-
ments, and particularly on flooding and water balance, has not been sufficiently studied 
in the western Rift Valley escarpment of Ethiopia.
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Objectives
The main objective of this study was to analyze the dynamics of flooding and water bal-
ance in response to vegetation cover change in the western Rift Valley escarpment of 
Northern Ethiopia. The study had the following five specific objectives: 

 — Analysis of the role of reforestation interventions on minimizing land degradation,
 — Investigation of land cover changes over the last eight decades (1936-2014),
 —  Analysis of variability in peak discharge in relation to spatial rainfall variability, veg-

etation cover and physiographic factors,
 — Analysis of bedload dynamics in relation to peak discharge, vegetation cover, rain-

fall variability and physiographic factors, and 
 — Examination of major stream channel adjustments in relation to spatial variability in 

rainfall distribution, vegetation cover, peak discharge and stream bedload  dynamics.

The study area
The study area consists of a section of the western Rift Valley escarpment of Northern 
Ethiopia. First, 20 adjacent catchments, which had been severely degraded up to the mid-
1980s and were later reforested to various degrees, were selected for analyzing the role 
of reforestation interventions in minimizing land degradation in the western Rift Valley 
escarpment of Northern Ethiopia. Based on the result, 11 catchments were selected for 
detail analysis (Figure 2). The catchments contained contrasting vegetation cover (rang-
ing from 4 - 58%), which fully represent the diverse characteristics of the catchments in 
the western Rift Valley escarpment in terms of vegetation cover, geomorphology, land 
rehabilitation, settlement and other land uses.. 

Figure 2: Location map of the study area.
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Location
The study area (12º20’ and 12º30’ and 39º27’ and 39º35’) is found in the Southern zone 
of Tigray region of Northern Ethiopia on the edge of the western Rift Valley escarpment 
(Figure 1). Specifically, the study catchments are found in Ofla wereda (93%) and Raya 
Alamata (7%) wereda of the southern Tigray region. 

Lithology and geomorphology
The lithology of the study area is composed of Cenozoic volcanic rocks consisting of the 
Hashenge formation, the Alaje formation and the Aiba basalts (Berhe et al., 1987; GSE, 
1996). 
The elevation of the catchments ranges from 1549 to 3140 m a.s.l., and the average catch-
ment slope gradient ranges from 0.27 to 0.65 m m-1. Even at the highest elevations, no 
frost occurs and there was no glacial or periglacial activity during the Pleistocene (Hen-
drickx et al., 2015).The escarpment drains towards the east and ephemeral mountain 
streams turn into braided river systems when reaching the Raya graben floor (Billi, 2007; 
Biadgilgn et al., 2015) (Figure 2). 

Catchment Area
(km2)

Slope 
gradient
(m m-1)

Perimeter
(km)

Elevation (m a.s.l.)

Max Min Mean

Wera 12.52 0.28 18.34 3140 2332 2748
Mistay Aha 3.79 0.27 8.12 2636 2282 2422
Hara 24.47 0.34 28.46 3140 1592 2477
G. Kahsu upper 1.87 0.52 5.97 3085 2099 2666
G.Kahsu lower 5.89 0.50 14.20 3085 1705 2276
Hawla upper 0.83 0.54 3.90 2920 2299 2628
Hawla lower 3.38 0.57 9.68 2920 1856 2272
Jeneto upper 0.62 0.58 3.16 2165 1711 1910
Jeneto lower 1.0 0.50 4.08 2165 1677 1869
Maliko 0.36 0.65 2.66 2420 1884 2184
Bora 1.76 0.51 6.28 2414 1549 1920

Table 1: Basic topographic characteristics of the catchments.

Soil 
The catchments under investigation have five soil types. Eutric Cambislos, Lithic Lep-
tosols, Eutric Regosols, Pellic Vertisols and Eutric Nitosos. Moreover, some parts of the 
catchments are severely degraded up to the bed rock (MoA, 2003).

Population distribution 
According to the 2007 population and housing census report of the Ethiopian central 
statistical authority (CSA), Tigray region had a total population of 4,316,988 (CSA, 2008). 
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This was projected to increase to 5,055,999 by 2015 (CSA, 2013). There is great variability 
in population size among the administrative zones in the region where in 2007, 29% 
(1,245,824) of the total population was found in the central Tigray zone followed by 23% 
(1,006,504) in the southern Tigray zone. Excluding the urban areas, Ofla wereda, which 
constitutes 93% of the study area is one of the most populous weredas in the southern 
Tigray region next to Hintalo Wejerat and Raya Azebo Weredas. Similarly, in terms of 
population density, next to Alage and Endamekoni weredas, Raya Alamata and Ofla were-
das (where 7% and 93% of the study catchments are found respectively) are the most 
populous weredas in the zone. These weredas have higher density than the zone itself.

Place Population size

2007a 2015b Density (person Km-2)c

Tigray regional state 4,316,988 5,055,999 122
North western Tigray zone 736,805 848,021 60
Central Tigray zone 1,245,824 1,431,672 138
Eastern Tigray zone 755,343 883,860 142
Western Tigray zone 356,598 418,756 30
Mekelle city special zone 215,914 323,700 2960
Southern Tigray zone 1,006,504 1,149,990 115
Seharti Samre wereda* 124,340 139,479 81
Enderta wereda* 114,297 124,784 92
Hintalo wejerat wereda* 153,505 172,452 89
Alaje wereda 107,972 120,989 158
Endamekoni wereda 84,739 93,716 153
Raya Azebo wereda 135,870 154,861 88
Raya Alamata wereda 85,403 95,094 133
Ofla wereda 126,889 138,563 128
Maychew/town/wereda 23,419 35,067 2166
Korem/town wereda 16,856 25,190 2247
Alamata/town/wereda 33,214 49,795 3943

a based on the 2007 population and housing census report
b  projections based on the 2007 population and housing census report
c  calculated based on the projected population in column 3.
* these weredas are now in the South Eastern Tigray zone which was established after the 2007 population and housing 

census

Table 2: Demographic characteristics of the study area.

Materials and methods
Analyzing the role of reforestation interventions on minimizing land degradation 
As a first approach, analysis of the impact of reforestation interventions on minimiz-
ing land degradation was carried out on 20 adjacent catchments by (i) examining the 
relationship between land degradation as represented by density of scar networks and 
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vegetation cover as represented by Normalized Difference Vegetation Cover (NDVI) as 
well as major topographic variables (slope gradient and slope aspect); and (ii) by identify 
the major stream channel adjustments occurring in response to catchment scale vegeta-
tion cover changes. 
The mean NDVI values of each catchment were computed from Landsat satellite image 
(Thematic Mapper) of 25 December 2010 while all scars on the steep slopes of the 20 
catchments were mapped on Google Earth imagery (0.6 m resolution acquired in Octo-
ber 2005) and were processed in GIS to examine the status of land degradation in each 
catchment. The topographic characteristics of the catchments were computed from a 30 
m resolution digital elevation model (DEM). Detail field observation and interviews with 
local communities were used to identify the major stream channel adjustments that had 
occurred in response to vegetation cover changes.

Analyzing long term land cover changes over eight decades (1936-2014)
Based on the analysis of the role of reforestation interventions on minimizing land on 20 
adjacent catchments, 11 study catchments with contrasted vegetation cover were selected 
for detail analysis. Hence, long term land cover change analysis was carried out from 
both black-andwhite aerial photos (1936, 1965 and 1986) and high resolution Google 
Earth imaging (2005 and 2014) complemented with detail field verifications. The digi-
tization process was carried out on screen using ArcGIS and stereoscopes were used to 
supplement the mapping process. 

Analyzing variability of peak discharge in relation to precipitation variability and 
vegetation cover
— Monitoring precipitation variability
Peak discharge is an important variable that best explains the hydrological characteristics 
of mountain streams. Hence, the run off response of the 11 catchments was analyzed us-
ing peak discharge events which were monitored over three rainy seasons (2012-2014) in 
11 stations. In any hydrological analysis, it is crucial to have data on the spatio-temporal 
distribution of precipitation across catchments (Volkmann et al., 2010), which is usually 
done from ground based rain gauge networks (Villarini et al., 2008). Hence, seven non-
recording rain gauges (opening diameter = 20 cm) were installed to collect the amount of 
precipitation events over three years (2012 – 2014) (Figure 3). Measurements were made 
once a day (6:00PM). The locations of the rain gauges were selected based on geographic 
spread, topography, altitude and accessibility (WMO, 2008), giving a density of one rain 
gauge per 5.2 km2. This allowed for accurate representations of spatial variability of rain-
fall (Volkmann et al., 2010). The station precipitation data were converted in to a daily 
precipitation map (Villarini et al., 2008) using the Thiessen Polygon method (National 
Weather Service, 1999) and finally, total annual rainfall of the stations and area-weighted 
average daily precipitation over the catchments (P

d
) were calculated. The precipitation 

events together with vegetation cover of 2014 were used to explain the variability in runoff 
of response of the catchments. 



[ 135 ]

REGREENING OF THE NORTHERN ETHIOPIAN MOUNTAINS: EFFECTS ON FLOODING AND ON WATER BALANCE

— Calculation of peak discharge 
Runoff response of catchments can be directly measured in different conventional ways. 
In the case of mountainous streams, however, direct measurement during the floods pre-
sents many challenges mainly due to the flash rate of the flow and its destructive charac-
ter (WMO, 2008; Lumbroso and Gaume, 2012). Hence, it is frequently impossible or im-
practical to measure the peak discharges when they occur because of conditions beyond 
human control (Rantz, 1982). When such conditions occur, peak discharges in steep 
mountain streams are indirectly estimated after floods (Lumbroso and Gaume, 2012). 
In the current study, peak stage discharges were measured in the rainy seasons of 2012, 
2013 and 2014 using 11 crest stage gauges (Waltermeyer, 2008) (Figure 4) which were 
installed in the outlets of the catchments. 
The peak stage data were collected after runoff events (Figure 5). Each station was visited 
at least once a week on a rotational basis whereby recorded peak stage was associated 
with the largest precipitation event in the intervening period and a total of 332 measure-
ments were carried out. Based on the daily peak stage data, peak discharge events were 
computed using the Manning’s equation which is the most commonly used hydraulic 
technique for estimating open channel flow for uncalibrated section (Jarrett, 1984; Lum-
broso and Gaume, 2012; Karalis et al., 2014):
  

Figure 3: Monitoring stations for rainfall, peak discharge and bedload.
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Figure 4: Crest stage gauge (A), sawdust being placed in the bowl of the lower cap before and after 
measuring peak stage (B), remnants of sawdust on wood staff indicating the highest peak stage of 
the flood (C), and wood staff being cleaned for the next flood (D).

Figure 5: Intensive rainfall event of 21.1 mm (occurred in a very short period) in Wera’ catchment 
(23/8/2013) produced a strong flash flood of 128 m3 s-1 at the monitoring station. Crest stage 
gauge appears in the middle of the opposite bank.
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Analyzing bedload supply and movement 
The rapid, deep, turbid, and turbulent character of the flows, as well as large roughness 
elements and uneven bed topography usually make direct measurement of bedload trans-
port in mountain streams very difficult (Wohl, 2000). In this study, due to the flash nature 
of the stream flows and the fact that peak discharges usually occur in the late afternoon 
or at night, variability in bedload supply and entrainment were studied by measuring the 
size of the 10 coarsest bedload particles (Max10) moved by peak discharge events.
Benchmarks were painted on largest bed materials, which are relatively stable, or bed rock 
outcrops which hardly move by runoff as reference points. Photographs were taken before 
and after peak flow event from fixed direction and are used to identify the new bedload 
particles deposited inside the polygons delimited by benchmarks (Figure 6). The average 
intermediate diameters of the newly deposited 10 coarsest bedload particless (Max10) were 
measured in situ using a tape measure. To avoid measurement errors and bias, an average 
of five measurements were taken per stream bed particle. While we tried to take vertical 
photographs (to facilitate measurement via photo) by positioning a camera directly over 
the areas between the painted large boulders, we found that in the lower stations where 
the stream cross-sections were wider (up to 30 meters in Hara station), it was difficult to 
take vertical photos and this led to significant distortions. Moreover, some materials were 
obscured by overlying grains and grass (Church et al., 1987). Hence, only in situ measure-
ments were used for the sake of accurate measurements while the photos were used to 
identify the newly moved bedload particle in peak discharge events. 

Figure 6: Hara monitoring station: photographs of bed materials (A) taken before (photographed 
on 19/7/2012) and (B) after a flood event (re-photographed on 20/7/2012). Black arrows indicate 
some of the new coarsest bed load particles moved, blue arrows indicate crest stage gauge and red 
arrows indicate tape meter (diameter = 20 cm) used as a scale for the size of the bedloads moved.

In addition, in order to analyze the characteristics of the stream bed particles at the moni-
toring stations, stream bed particle sampling was carried out using the Wolman’s (1954) 
pebble count method, which is the most widely used and the most efficient technique 
(Harelson et al., 1994). Stream bed particles were sampled systematically at every 30 cm 
interval both before and after the rainy season (Figure 7). 
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Figure 7: Systematic pebble counting in Wera’ station; measuring tape stretched along the stream 
(A), x and y indicate painted benchmarks for starting the pebble count before and after the rainy 
season. An assistant researcher, measuring the stream bed particles at every 30 cm interval (B).

Finally, the average size of the 10 coarsest bedload particles (Max10) moved in each peak 
discharge event was explained by various biophysical and hydraulic variables such as veg-
etation cover of the catchment, scar density, average catchment slope gradient, catch-
ment area, hypsometric integral, as well as by hydraulic variables such as peak discharge 
(Qp), stream power (W) and critical shear stress (τc).

Analysis of stream channel geomorphologic changes over eight decades  
(1936-2014) 
Stream channel geomorphologic adjustments were analyzed by mapping the geomor-
phologic changes of stream channels using aerial photos (1936, 1965 and 1986) and 
Google Earth images (2005 and 2014) as well as field measurements. The changes were 
explained in relation to vegetation cover changes, peak discharge and other biophysical 
variables. Investigation of active and inactive stream channels; boulder bars, abandoned 
channels, terraces, incised channels as well as changes in the width of the stream chan-
nels were carried out for the main streams of the 11 catchments during the detail geomor-
phological survey. Locations of the major geomorphologic changes were collected using 
hand held Garmin Global Positioning System (GPS) (resolution = 7 m) and were mapped 
using the 2005 and 2014 Google Earth images (0.6 m resolution). Local informants who 
have knowledge about the historical changes in the vegetation cover and its impact on 
flooding and boulder supply to the streams were involved during the field campaign. 
Channel morphological changes were monitored over three years (2012-2014) at the out-
lets of the eleven stations selected for monitoring of peak discharge and bedload particle 
movement.
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Results and discussion
The implications of integrated catchment rehabilitation on minimizing land 
degradation
Analysis of the level of land rehabilitation in 20 adjacent catchments by correlating den-
sity of scar networks (mapped on Google Earth imagery of 2005) and vegetation cover as 
represented by Normalized Difference Vegetation Index (NDVI) reveals that the density 
of scar networks was negatively related to NDVI (R2 = 0.28, p < 0.01) and positively with 
the steepest slope gradients of catchments (> 60%) (R2 = 0.21, p < 0.05) (Figure 8). Gen-
erally, this result indicates that the reforestation intervention which led to improvements 
in vegetation cover contributed to the reductions in the levels of degradation of the catch-
ments, whereas the positive relationship between the density of scar networks and slope 
gradient shows the highest susceptibility of steep mountain catchments to land degrada-
tion (Tesfaalem et al., 2016). 

Figure 8: Relationship between Normalized Difference Vegetation Index and scar density (left) and 
between average gradient of the steepest slopes (>60%) and scar density (right). 

Given that such steep catchments need time to fully recover from the impact of severe 
degradation, some of the scar networks in the catchments with relatively less vegetation 
cover still remain as relics on the slopes, being overgrown by vegetation. This is com-
monly observed in the catchments which are not exclosed from the reach of both human 
beings and livestock. In the Gira Kahsu catchment, a catchment from where flow of huge 
discharge and sediment volumes caused devastative flooding of the Raya Graben and in 
Alamata town in particular, the scars have almost disappeared due to the establishment 
of exclosures in most part of the catchment. This implies that when steep catchments are 
freed from the reach of human beings and livestock, the rate of rehabilitation becomes 
faster.
The analysis of historical aerial photos also indicated that in the 1930s, the density of 
scar networks was much less than in 2014. Though it was not possible to map the scar 
networks for 1965 and 1986 due to the low resolution of the aerial photographs, it could 
be understood that the density of scar networks could have been much more than the scar 
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density in 2014 before they recovered owing to increasing forest cover. This is strength-
ened by the fact that the density of scar network in Gira Kahsu lower catchment was 
higher in 1936 (0.14 km km-2) than in 2014 (0.04 km km-2). 

Long term dynamics of land cover 
The long term land cover change analysis using the aerial photos of 1936, 1965 and 1986 
as well as Google Earth imageries of 2005 and 2014 (Figure 9) revealed two important 
periods of land cover change in the study area, (i) rapid deforestation between 1965 and 
the early 1980s and (ii) remarkable improvement of vegetation cover after 1986. 

Figure 9: Long term land cover maps (1936-2014).

Bushland was the dominant land cover class in the 1930s. Cropland became the domi-
nant land cover between the 1960s and first half of the 1980s. Due to the reforestation 
interventions initiated in the second half of the 1980s, forest cover increased from 9% 
in 1986 to 23% in 2005 and 27% in 2014. Total woody vegetation cover (forest, bushland 
and shrubland) increased from 52% in 1986 to 62 % in 2005 and 2014. On the other 
hand, the proportion of cropland decreased from 43% in 1986 to 31% in 2005 and 2014. 
Although the 1936 aerial photos did not fully cover the study area, it appears that vegeta-
tion cover was better than in 1965 and 1986. Woody vegetation cover was 65% in 1936, 
48% in 1965 and 52% in 1986. Particularly, Gira Kahsu upper and Gira Kahsu lower were 
the catchments which showed remarkable improvement in vegetation cover after the sec-
ond half of the 1980s (chapter three) owing to the integrated reforestation activities and 
establishment of exclosures in these catchments. 
Therefore, this study demonstrates the role of reforestation interventions in rehabilitat-
ing severely degraded catchments over a relatively short period of three decades even in 
steep mountain regions with high rainfall variability. 
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Variability of peak discharge in relation to rainfall variability and land cover change 
Variability in discharge typically depends on precipitation variability, vegetation cover 
change, and local topographic factors (Begueria et al., 2006). Owing to their steep slope 
gradients and high intensity of rainfall, mountain streams are usually characterized by 
instantaneous and extreme peak discharges which are usually associated with destructive 
torrents and floods (Ruiz-Villanueva et al., 2010). In this study, the peak discharge analy-
sis based on the 322 events was in line with the findings by Garcıa-Ruiz et al. (2008) and 
many other studies in mountainous areas. The results showed a strong positive linear 
relationship between rainfall and peak discharge events in all the catchments (R2 = 0.32 
- 0.94). On the other hand, an exponentially negative relationship was observed between 
catchment-specific peak discharge coefficient and percentage of vegetation cover (for-
est and grass) (R2 = 0.85, p < 0.01) (Tesfaalem et al., 2015a). Unlike in many flat lands, 
the catchment-specific peak discharge coefficient was also negatively related to relative 
distance of vegetation cover from the thalweg (R2 = 0.55, p < 0.01) (Figure 10) and with 
a combined index of vegetation cover and its relative distance from the thalweg (R2 = 
0.76, p < 0.01). This shows that, in such steep catchments, if the steepest parts of the 
catchments are reforested, runoff is effectively buffered long before it reaches in the thal-
weg, hence, both the percentage of vegetation cover and its location on the upper steeper 
slopes have significant impact on runoff response of steep mountain catchments. 

Figure 10: Negative exponential relationship between (A) percentages of total forest and (B) 
vegetation cover, with catchment-specific discharge coefficient (Cp).

Variability in bedload supply and movement in relation to rainfall variability and land 
cover change 
Variability in the supply and movement of stream bedload is the other hydro-geomor-
phologic characteristic of mountain catchments usually associated to storm events. In 
this study, variability in bedload supply and movement was analyzed along with the peak 
discharge event by field measurements of the median diameter of the 10 coarsest bedload 
particles (Max10) moved in each event (n = 332) and by measuring the D50 and D84 of 
the bedload particles using Wolman’s stream bed particle sampling method (n = 100) 
before and after the rainy seasons (July - September) over the last three years (2011-2014). 
Moreover, hydraulic competence analysis was carried out using peak discharge, stream 
power and critical shear stress approaches. 
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Generally, in this study it was demonstrated that the supply of stream bedload in steep 
mountains is determined negatively by forest cover (R2 = 0.60, p < 0.01) or vegetation 
cover (R2 = 0.58, p < 0.01) and positively by the average density of scar networks in the 
sloping catchments (R2 = 0.50, p < 0.01) and catchment size (R2 = 0.36, p < 0.01) while 
the movement of bedload particles in the stream channels is highly controlled by peak 
discharge (Qp) (R2 = 0.60, p < 0.01, stream power (W ) (R2 = 0.71, p < 0.01) and critical 
shear stress (τc) with reference to D50 (r 50) (R2 = 0.96, p < 0.01) and D84 (r84) (R2 = 
0.93, p < 0.01) (Tesfaalem et al., 2015b) (Figure 11). 

Figure 11: Relationship between average diameter of the 10 coarsest bedload particles moved 
(Max10) and Peak discharge(Qp), Stream power (W ), critical shear stress with a reference of D84  
(τc r84) and critical shear stress with a reference of D50 (τc r50).

Adjustment of mountain stream channels in response to discharge and sediment 
supply 
In line with the Schumm’s (1956) theoretical work, the spatio-temporal variability in 
peak discharge and bedload occurred over the last eight decades was strongly associated 
with stream geomorphologic adjustments. In the 1930s, stream channels were relatively 
narrow, sinuous and stabilized with vegetation. Due to higher peak discharge and bed-
load supply, stream channels became wider, straight and braided between 1965 and 1986 
whereas after the second half of the 1980s, the channels gradually returned to being nar-
row, sinuous and single thread due to reductions in discharge and bedload supply in rela-
tion to restoration of the vegetation cover. Between 2012 and 2014, the streams incised 
(Figure 12) on average by 6 cm year-1. Stream bed incision was positively related to average 
peak discharge (R2 = 0.71, p < 0.05, n = 11). 
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Figure 12: The river Hara stream bed at station was incised on average by 26 cm between 2/8/2012 
and 13/8/2013 and by 73 cm between 2/8/2012 and 05/01/2015. The capacity of the stream flow 
is now weak to transport the big boulders (D).

The positive relationship between stream incision and peak discharge as well as the neg-
ative relation between peak discharge and vegetation cover implies that nowadays, the 
peak discharge flow is carrying less bedload and hence, the relatively clear water is de-
grading the stream bed (Boix-Fayos et al., 2007). By 2014, the width of the active channel 
of 4 of the 11 streams narrowed to 39% of the width of the flood plain. Moreover, most of 
the bars which were mainly formed by the supply of big boulders up to the first half of the 
1980s are now stabilized by vegetation.

Conclusion and recommendations
Conclusions
Overall, based on the findings of the study, the following conclusions were drawn. 
Catchment reforestation in the steep mountain catchments of the western Rift Valley es-
carpment of northern Ethiopia has led to a remarkable stabilization of the slopes in less 
than 30 years, as well as to a narrowing and incising of rivers that should be interpreted 
as signs of resilient catchments.
In steep mountainous catchments where it is difficult to directly measure peak discharg-
es using the conventional techniques, given that daily rainfall events generally occur as 
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short intensive storms, the hydrological behavior of such mountains could be success-
fully understood using simple measurements of daily rainfall and peak discharge events. 
The hydrologic behavior of reforesting steep mountain catchments is determined by pre-
cipitation events and strongly by percentage of vegetation cover and its strategic loca-
tion; farther from the thalweg in the sloping sides of the catchment where vegetation 
cover buffers volume and velocity of run off before it reaches a drainage line. Daily rain-
fall events strongly determine peak discharge but its relative influence decreases with 
increasing vegetation cover. 
The availability and supply of bedload in steep mountains is determined negatively by 
forest or vegetation cover and positively by the presence of scar networks in the steepest 
part of the catchments. The movement of bedload in the stream beds is highly explained 
by peak discharge, stream power and strongly by critical shear stress.
In steep mountain streams where direct measurement of bedload transport is difficult, 
field measurement of the coarsest bedload particles moved after every peak discharge 
event enables the analysis of variability of bedload flux.
Analysis of variability in bedload supply and movement using simple in situ measure-
ment of the coarsest bedload particles moved in each peak discharge event allows recon-
structing historical flood events, if bedload transport conditions are understood.
Steep mountain stream channels quickly adjust to changes in vegetation and associated 
peak discharge and bedload supply.

Recommendations
In line to the findings of this research, we make the following recommendations.
Reforestation interventions in steep mountain catchments could strongly decrease flood-
ing and transport of bedload to fertile and densely populated lower areas; this control of 
deforestation-related environmental calamities occurred furthermore in a relatively short 
time. Hence, the reforestation activities should continue in the catchments which still 
have insufficient vegetation cover. Moreover, the strict follow-up of the already reforested 
areas should continue so that the sustainability of the reforestation process continues. 
As recommended previously by Nyssen et al. (2008) and Descheemaeker et al. (2006) 
based on their studies in a nearby area and as confirmed in this study, priority in refor-
estation interventions should be given to the steepest parts of catchments, where runoff 
can be buffered before it enters the drainage system.
In case of catchment management and reforestation activities, down river cutting in the 
lower part of the catchment may lead to bank failures. Infrastructure planning should 
anticipate such hydrogeomorphological changes.
The study area is very suitable for the demonstration of the effects of rehabilitation, par-
ticularly the Gira Kahsu catchment that is easily accessible and where vegetation changes 
were strongest. Available material, historical photographic documentation, strong cor-
relations and directly observable field evidence can be the base for educational tours. 
Equipping the Gira Kahsu catchment with didactic boards could be another component 
of such a demonstration programme.
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