Interpreting the I-Xe system in individual silicate grains from Toluca IAB

O. V. PRAVDIVTSEVA, A. P. MESHIK, C. M. HOHENBERG, M. PETAEV

Abstract


Detailed isotopic and mineralogical studies of silicate inclusions separated from a troilite nodule of the Toluca IAB iron meteorite reveal the presence of radiogenic 129Xe in chlorapatite, plagioclase, perryite, and pyroxene grains. Subsequent I-Xe studies of 32 neutron-irradiated pyroxene grains indicate that high-Mg and low-Mg pyroxenes have distinctive I-Xe signatures. The I-Xe system in high-Mg pyroxenes closed at 4560.5 ±  2.4 Ma, probably reflecting exsolution of silicates from the melt, while the low-Mg pyroxenes closed at 4552.0 ± 3.7 Ma, 8.5 Ma later, providing a means for determining the cooling rate at the time of exsolution. If the host Toluca graphite-troiliterich inclusion formed after the breakup and reassembly of the IAB parent body as has been suggested, the I-Xe ages of the high-Mg pyroxenes separated from this inclusions indicate that this catastrophic impact occurred not later than 4560.5 Ma, 6.7 Ma after formation of CAIs. The cooling rate at the time of silicates exsolution in Toluca is 14.5 10.0 C/Ma.

Keywords


Chronology;Cooling rate(s);Iodine-xenon ages;iron IAB Meteorite(s)

Full Text:

PDF