Crystallization experiments on a Gusev Adirondack basalt composition
Abstract
Until recently, the SNC meteorites represented the only source of information about the chemistry and petrology of the Martian surface and mantle. The Mars Exploration Rovers have now analyzed rocks on the Martian surface, giving additional insight into the petrology and geochemistry of the planet. The Adirondack basalts, analyzed by the MER Spirit in Gusev crater, are olivine-phyric basaltic rocks which have been suggested to represent liquids, and might therefore provide new insights into the chemistry of the Martian mantle. Experiments have been conducted on a synthetic Humphrey composition at upper mantle and crustal conditions to investigate whether this composition might represent a primary mantle-derived melt. The Humphrey composition is multiply saturated at 12.5 kbar and 1375 °C with olivine and pigeonite; a primary anhydrous melt derived from a "chondritic" mantle would be expected to be saturated in orthopyroxene, not pigeonite. In addition, the olivine and pigeonite present at the multiple saturation are too ferroan to have been from a Martian mantle as is understood now. Therefore, it seems likely that the Humphrey composition does not represent a primary anhydrous melt from the Martian mantle, but was affected by mineral/melt fractionations at lower (crustal) pressures.
Keywords
Martian rocks;Basalt;Phase equilibria;Igneous differentiation