Acquisition of shock remanent magnetization for demagnetized samples in a weak magnetic field (7 μT) by shock pressures 520 GPa without plasma-induced magnetization
Abstract
Demagnetized samples of cobalt precipitates in a copper matrix were shocked to 5, 10, and 20 GPa in a weak magnetic field of 7.7 μT to elucidate the origins of the natural remanent magnetization of meteorites and the magnetic anomalies of impact craters on the moon and Mars. The samples placed in the target acquired shock remanent magnetization (SRM) whose intensity increased up to 21.3 times compared with the demagnetized state, but SRM intensity and shock intensity were not correlated. The SRM direction was in most cases approximately perpendicular to the shock direction. The samples placed 4.8 mm from the impacted surface did not acquire significant magnetization, suggesting no plasma-induced remanent magnetization (PIRM) up to 20 GPa. When the samples were divided into 8 sub-samples, the SRM intensities of sub-samples increased up to 40 times compared with bulk ones and their directions were scattered. Higher coercive force grains were magnetized perpendicular to the shock direction for shocks of 5 and 10 GPa, but at 20 GPa the directions were less systematically oriented. These results suggest that the proposed plasma-induced magnetization of impactites should be reconsidered
Keywords
Shock;Magnetization;Plasma