Numerical simulation of temperature effects at fissures due to shock loading

N. Heider, T. Kenkmann

Abstract


The localized appearance of specific shock features in target rocks and meteorites such as melt veins and high pressure polymorphs suggests that regions with a local increase in pressure and temperature exist as a shock wave propagates through an inhomogeneous rock. In this paper, we investigate the effect of planar fissures on the local temperature distribution using numerical simulations. Time-dependent parameters such as temperature, pressure, and displacement are evaluated. The simulation model is based on a shock equation of state for the involved materials, dunite and quartzite, and simulates geometries that were also used in shock-loading experiments. An artificial gap between the materials simulates an open fissure at the interface. A strong temperature increase occurs at a gap size of 0.1 mm, which potentially can cause melting in a thin layer at the interfaces. The temperature decreases with decreasing gap size. Temperature and pressure excursions at the interface are induced by the closure of the gap, which causes a second shock wave to superpose the primary wave. Open fissures and fractures, which occur ubiquitously in shallow-buried target rocks and projectiles, thus, act as local pressure and temperature amplyfiers and may be responsible for thin melt vein formation in shocked rocks.

Keywords


Lithological interface;Fissure;Numerical simulation;Shock loading

Full Text:

PDF