Thermoluminescence sensitivity and thermal history of type 3 ordinary chondrites: Eleven new type 3.0-3.1 chondrites and possible explanations for differences among H, L, and LL chondrites
Abstract
We review induced thermoluminescence (TL) data for 102 unequilibrated ordinary chondrites (UOCs), many data just published in abstracts, in order to identify particularly primitive UOCs and further explore TL systematics that may have implications for the history of the chondrites and their parent body. We have identified 11 UOCs of petrologic types 3.0-3.1: Adrar 003, Elephant Moraine (EET) 90066, EET 90161, Grosvenor Mountains (GRO) 95502, Lewis Cliff (LEW) 88477, Meteorite Hills (MET) 96503, Yamato (Y)-790787, Y-791324, Y-791558, Y-793565, and Y-793596. These samples represent an important new resource for researchers interested in the nature of primitive solar system materials. Previously reported trends in which TL sensitivity increases with TL peak temperature and TL peak width, which we interpret in terms of crystallization of feldspar in the ordered or disordered forms during metamorphism, are confirmed by the new data. Importantly, the present data strengthen the trend described earlier in which the mean level of metamorphism experienced by UOCs increases along the series LL, L and H. This suggests either different burial depths for the UOCs from each class, or formation at similar depths in regoliths of different thickness.
Keywords
thermoluminescence;ordinary chondrites;solar system;metamorphism