The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body

Alan E. Rubin, Michael E. Zolensky, Robert J. Bodnar

Abstract


Zag and Monahans (1998) are H-chondrite regolith breccias comprised mainly of light-colored metamorphosed clasts, dark clasts that exhibit extensive silicate darkening, and a halite-bearing clastic matrix. These meteorites reflect a complex set of modification processes that occurred on the H-chondrite parent body. The light-colored clasts are thermally metamorphosed H5 and H6 rocks that were fragmented and deposited in the regolith. The dark clasts formed from light-colored clasts during shock events that melted and mobilized a significant fraction of their metallic Fe-Ni and troilite grains. The clastic matrices of these meteorites are rich in solar-wind gases. Parent-body water was required to cause leaching of chondritic minerals and chondrule glass; the fluids became enriched in Na, K, Cl, Br, Al, Ca, Mg and Fe. Evaporation of the fluids caused them to become brines as halides and alkalies became supersaturated; grains of halite (and, in the case of Monahans (1998), halite with sylvite inclusions) precipitated at low temperatures (≤100 °C) in the porous regolith. In both meteorites fluid inclusions were trapped inside the halite crystals. Primary fluid inclusions were trapped in the growing crystals; secondary inclusions formed subsequently from fluid trapped within healed fractures.

Keywords


Olivine;Meteorites;Chondrule formation;LL ordinary chondrites;Relict grains

Full Text:

PDF